BAB I
STRUKTUR ATOM DAN SISTEM PERIODIK
Struktur Atom
A. Partikel-Partikel Penyusun Atom
1. Elektron.
Tabung katode terbuat dari dua kawat yang di beri potensial listrik yang cukup besar dalam tabung kaca sehingga dapat terjadi perpendaran cahaya. J.Plucker menyimpulkan Bahwa sinar katode mempunyai sifat :
1. Merambat lurus dari kutub negatif ke kutub positif.
2. Bermuatan negatif
3. Sifat sinar katode tidak di pengaruhi oleh jenis kawat elektrode yang di pakai, jenis gas dalam tabung dan bahan yang di gunakan untuk menghasilkan arus listrik.
Pada tahun 1879 William Crookes menemukan tabung katode yang lebih baik. Maka JJ. Thompson memastikan bahwa sinar katode merupakan partikel sebab dapat memutarkan baling-baling yang di letakkan di antara katode dan anode. JJ. Thompson menyatakan bahwa sinar katode merupakan partikel penyusun atom ( Partikel Sub Atom ) yang bermuatan negatif dan di sebut elektron.
Teori Atom Thompson:
Atom merupakan bola pejal yang bermuatan positif dan didalamnya tersebar muatan negatif elektron.
Penyelidikan lebih lanjut di lakukan oleh Robert A. Milikan dan berhasil menemukan muatan setiap tetes minyak, yaitu kelipatan dari bil yang sangat kecil yaitu 1,59 x 10-19 c. dan kemudian di sebut dengan satuan muatan elektron
2. Inti Atom
Pada tahun 1886 Eugen Goldstein memodifikasi tabung sinar katode dengan melubangi lempeng sinar katodenya. Dan Goldstein menemukan sinar yang arahnya berlawanan dengan sinar katode melalui lubang katode tersebut. Sinar ini melewati lubang (kanal) maka sinar ini di sebut sinar kanal.
Pada tahun 1898, wilhelm Wien menunjukkan bahwa sinar kanal merupakan partikel yang bermuatan positif. Sinar kanal di sebut proton, dari penelitian terhadap atom hidrogen dapat di tentukan bahwa massa proton adalah 1.837 kali massa elektron. Untuk mengetahui partikel-partikel tersebut Ernest Rutherford bersama dua orang muridnya (Hans Geiger dan Ernest Marsden) melakukan percobaan yang di kenal dengan hamburan sinar alfa terhadap lempeng tipis emas.
Dan dapat di simpulkan antara lain :
a. Atom bukan bola pejal, karena hampir semua partikel di teruskan.
b. Jika lempengan emas tersebut di anggap sebagai satu lapisan atom-atom emas, maka di dalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif
c. Berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan di belokkan jika perbandingan tersebut nerupakan perbandingan diameter, maka di dapatkan ukuran inti kira-kira 10.000 lebih kecil daripada ukuran atom secara keseluruhan
Model atom Rutherford mengusulkan model atom yang di kenal sebagai Atom Rutherford yang menyatakan bahwa atom terdiri dari inti atom yang sangat kecil dan bermuatan positif di kelilingi oleh elektron yang bermuatan negatif.
Rutherford memperkirakan jari-jari atom kira-kira 10–8 cm dan jari-jari inti kira-kira 10-13 cm. yang di buktikan oleh James Chadwick pada tahun 1932, berdasarkan perhitungannya terhadap massa atom dan percobaan hamburan partikel alfa terhadap boron dan parafin partikel atom yang menyusun atom di sebut neutron, jadi di dalam inti atom terdapat proton yang bermuatan positif dan neutron yang tidak bermuatan.
Partikel-partikel dasar penyusun atom :
Partikel Massa eksak
(gram) Massa relatif
(amu) Muatan eksak
(Coulomb) Muatan relatif
(sme)
Elektron
Proton
Neutron 9,1100 – 10 –28
1,6726 – 10 –24
1,6750 – 10 –24 0
1
1 – 1,6 . 10 –19
+1,6 . 10 –19
0 – 1
+1
0
B. Tanda Atom
Proton merupakan partikel khas suatu atom, artinya atom akan mempunyai jumlah proton yang berbeda dengan atom lain, jadi nomor atom menunjukkan jumlah proton yang di miliki oleh suatu atom.
Massa atom merupakan massa dari seluruh partikel penyusun atom. Jumlah proton dan neutron selanjutnya di sebut nomor massa dari suatu atom. atom-atom suatu unsur dapat mempunyai nomor massa yang berbeda karena jumlah neutron dalam atom tersebut berbeda. Atom-atom dari unsur yang sama mempunyai nomor massa atom yang berbeda yang di sebut isotop.
A
X
2
Keterangan : X = Lambang Unsur
A = Nomor Massa (Jumlah proton + Jumlah Neutron)
2 = Nomor Atom (Jumlah proton)
Contoh :
23ΙΙNa →Artinya: Isotop Na mempunyai nomor atom II dan nomor massa 23
→ Jumlah proton = II
→Jumlah Elektron = II
→Jumlah Newton = 23 – II
= 12.
C. Konfigurasi Elektron
Niels Bohr melalui percobaannya tentang spektrum atom hidrogen berhasil memberi gambaran keadaan elektron dalam menempati daerah di sekitar inti atom. Niels berhasil menyusun model atom yang di kenal sebagai “Model Atom Bohr”.
Menurut model atom Bohr. Elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang di sebut kulit elektron. Atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yan terletak paling dalam, semakin keluar besar nomor kulitnya dan makin tinggi tingkat energinya.
Tiap-tiap kulit elektron hanya dapat di tempati elektron maksimum 2n2, dengan n adalah nomor kulit.
“Kulit dan jumlah elektron maksimum”
Nomor kulit Nama kulit Jumlah elektron Maksimum
1
2
3
4
5
6
7 K
L
M
N
O
P
Q 2 elektron
8 elektron
18 elektron
32 elektron
50 elektron
72 elektron
98 elektron
Contoh :
→ 12 Mg : 2 8 2
→ 19 K : 2 8 8 1
D. Perkembangan Model Atom
John Dahlton mengemukakan pendapatnya tentang atom sebagai berikut :
a. Setiap unsur tersusun atas partikel-partikel kecil yang tidak dapat di bagi lagi yang di sebut dengan atom.
b. Atom-atom terdiri dari unsur-unsur yang sama akan mempunyai sifat yang sama, sedangkan atom-atom dari unsur-unsur yang berbeda akan mempunyai sifat yang berbeda pula.
c. Terjadi perubahan susunan atom-atom dalam zat tersebut.
Berdasarkan percobaannya tentang sifat listrik suatu zat, maka JJ. Thompson berkesimpulan bahwa atom merupakan bola pejal yang bermuatan negatif. Selanjutnya dari fakta percobaan di simpulkan bahwa atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, di kelilingi elektron pada jarak yang sangat jauh. Elektron tidak tertarik kedalam inti karena gaya tarik ini di lawan oleh gaya sentrifugal dari elektron yang bergerak melingkar.
Larutan Nonelektrolit dan Elektrolit
Zat cair yang bisa menghantarkan listrik di sebut elektrolit, sedangkan zat cair yang tidak dapat menghantarkan listrik di sebut Nonelektrolit Suatu zat dapat menjadi elektrolit bila di dalam larutannya xat tersebutterurai menjadi ion-ion yang bebas bergerak.
1 ). Senyawa Ion
Dalam keadaan padatan (Kristal) senyawa ion tidak menghantarkan listrik. Sebaliknya, bila senyawa ion tersebut dalam bentuk leburan atau larutan, maka ion-ionnya bebas bergerak sehingga dapat menghantarkan listrik.
2 ). Senyawa Kovalen
Beberapa senyawa kovalen dalam air dapat terurai menjadi ion-ion positif dan ion negatif. HCL merupakan senyawa kovalen, tetapi karena pengaruh molekul-molekul air, HCL dapat terurai menjadi ion H + dan ion cL–
HCL (aq) → Hf (aq) + cL– (aq).
“Peristiwa terurainya molekul menjadi ion-ion ini di sebut Ionisasi.
☺ Larutan elektrolit yang berdaya hantar listrik kuat di sebut elektrolit kuat.
☺ Larutan elektrolit yang berdaya hantar listrik lemah di sebut elektrolit lemah.
Sistem periodik unsur
A. Perkembangan Sistem periodik
1. Triade Dobereiner
“ Bila unsur-unsur di kelompokkan berdasarkan kesamaan sifatnya dan di urutkan massa atomnya, maka setiap kelompok mterdapat tiga unsur dengan massa unsur yang di tenga merupakan rata-rata dari massa unsur yang di tepi.
1. Teori Oktet Newland
Jika unsur-unsur di susun berdasarkan kenaikan massa atom, maka sifat unsur tersebut akan berulang setelah ke delapan.
1. Sistem Periodik Modeleef.
Bila unsur-unsur di susun berdasarkn kenaikan massa atomnya, maka sifat unsur akan berulang secara periodik
1. Sistem periodik modern.
Bahwa bila unsur-unsur di susun berdasarkan kenakan nomor atom, maka sifat unsur akan berukang secara periodi.
Beberapa golongan di beri nama khusus, Misalnya :
- golongan IA disebut dengan golongan Alkali
- golongan IIA disebut dengan golongan Alkali Tanah
- golongan VIA disebut dengan golongan Alkali Khalkogen
- golongan VIIA disebut dengan golongan Alkali Halogen
- golongan VIIA disebut dengan golongan Alkali gas mulia
5. Hubungan konfigurasi elektron dan Sistem periodik
Dari konfigurasi elektron dapat di tentukan letak unsur dalam sistem periodik, yaitu jumlah kulit elektron menunjukkan letak dalam sistem unsur
Contoh :
Golongan IIA : 4Be – 12 Mg – 20Ca – 38Sr mempunyai konfigurasi elektron masing-masing :
4 Be : 2 , 2
12 Mg : 2 , 8 , 2
20Ca : 2 , 8 , 8 , 2
38Sr : 2 , 8 , 18 , 8 , 2
Semua unsur golongan IIA mempunyai elektron valensi sebanyak 2 elektron.
Dari contoh tersebut dapat di simpulkan bahwa jumlah elektron valensi suatu atom unsur menunjukkan golongan di dalam sistem periodik unsur
A. Sifat-Sifat KePeriodikan.
1. jari-jari atom
jari0jari atom merupakan jarak dari pusat atom ( inti atom ) sampai kulit elektron terluar yang di tempati elektron. Panjang pendeknya jari-jari atom di tentukan oleh dua faktor yaitu :
a). Jumlah kulit elektron
Makin banyak jumlah kulit yang dimiliki oleh suatu atom, maka jari-jari atomnya makim panjang
b). Muatan inti atom
Makin banyak inti atom berarti makin besar muatan intinya dan gaya tarik inti atom terhadap elektron lebih kuat sehingga elektron lebih mendekat ke inti atom
Energi ionisasi
Energi ionisasi yang di perlukan untuk melepaskan elektron yang trikat paling lemah oleh suatu atom atau ion dalam wujud gas. Energi ionisasi pertama di gunakan untuk melepaskan elektron pada kulit terluar, sedangkan energi ionisasi yang kedua merupakan energi yang di perlukan suatu ion ( Ion +1 ) untuk melepas elektronnnya yang terikat paling lemah.
Afinitas Elektron
Afinits elektron adalah besarnya energi yang di hasilkan atau di lepaskan apabila suatu atom menarik sebuah elektron. Afinitas elektron. Afinits elektro dapat di gunakan sebagai ukuran mudah tidaknya suatu atom menangkap elektron semakin besar energi yang di lepas ( Afinitas Elektron ) menunjukkan bahwa atom tersebut cenderung menarik elektron menjadi ion negatif
Keelektronegatifan
Adalah kecendrungan suatu atom dalam menarik pasangan elektron yang di gunakan bersama dalam membentuk ikatan.makin besar keelektronegatifan suatu atom, makin nudah menarik pasangan elektron ikatan, atau gaya tarik elektron dari atom. Skala keelektronegatifan di dasarkan kepada gaya tarik terhadap elektron relatif
BAB II
“Ikatan Kimia”
A. Kestabilan Atom
1. Membentuk Ion
Dalam membentuk ion suatu atom akan melepas atau mengikat elektron. Untuk mencapai kestabilan, atom-atom yang mempunyai energi ionisasi yang rendah cencerung melepaskan elektron, sedangkan atom-atom yang mempunyai afinitas elektron yang besar cenderung mengikat elektron.
Contoh :
Atom 17 cl : 2, 8, 7 ( Konfigurasi tidak stabil )
Agar stabil cara yang memungkinkan adalah menjadikan konfigurasi elektron seperti 18 Ar : 2, 8, 8 Dengan mengikat sebuah elektron menjadi cl –
→ 17cl + e– cl –
( 2, 8, 7 ) (2, 8, 8 )
Proses perangkapan itu terjadi karena afinitas atom clorin besar
2. Menggunakan pasangan elektron bersama
Atom-atom yang sukar melepas elektron atau mempunyai energi ionisasi yang tinggi dan atom yang sukar menarik elektron atau mempunyai afinitas elaktron yang rendah mempunyai kecenderungan untuk membentuk pasangan elektron yang di pakai bersama
B. Ikatan ion
”Ikatan ion terjadi karena adanya gaya tarik-menarik elektrostatis antara ion positif dengan ion negatif”. Unsur-unsur logam umumnya mempunyai energi ionisasi yang rendah, sedangkan unsur-unsur nonlogam mempunyai afinitas elektron yang tinggi, dengan demikian dapat di katakan bahwa astara unsur-unsur logam dengan unsur-unsur nonlogam umumnya akan membentuk ikatan ion.
Contoh :
Senyawa NaCl
“Na : 2, 8, 1
17 cl : 2, 8, 7
Atom Na akan melepas sebuah elektron
Na → Na + + e–
Atom cl akan mengikat sebuah elektron yang di lepaskan oleh atom Na tersebut sehingga menjadi cl → + + e– cl– setiap ion Na + menarik sebuah ion cl- membentuk senyawa netral Na cl
Na+ + cl– → Na cl
C. Ikatan Kovalen
1. Ikatan Kovalen
Untuk menggambarkan bagaiman ikatan kovalen terjadi di gunakan rumus titik elektron ( struktur lewis ). Menggambarkan peranan elektron valensi dalam mengadakan ikatan
Contoh :
1. ,H : 1 ( Elektron Val. 1 ) Dilambangkan dengan : H.
2. 7N : 2,5 ( Elektron Val. % ) Dilambangkan dengan : N
3. : 2,6 ( Elektron Val, 6 ) Dilambangkan dengan : O
2. Ikatan Kovalen Koordinasi
Ikatan Kovalen Koordinasi umumnya terjadi pada molekul yang juga mempunyai ikatan kovalen.
3. Menggambarkan rumus titik elektron ( Lewis ) untuk molekul poliatom, beberapa catatan yang dapat berguna dalam meramalkan strujtur lewis dari molekul yang beratom banyak.
1). Semua elektron terluar ( elektron Valensi ) dari masing-masing atom yang berikatan harus di hitung
2). Umumnya atom-atom dalam struktur lewis akan mempunyai delapan elektron valensi, kecuali atom hidrogen yang hanya mempunyai 2 elektron (duplet).
3). Jumlah elektron yang do terima oleh suatu atom akan sama dengan yang di berikan, kecuali terjadi ikatan koordinasi yaitu suatu yang hanya nenberi atau menerima saja pasangan elektron.
4). Umumnya dalam struktur lewis semua elektron merupakan pasangan termasuk pasangan elektron bebas ( Tidak untuk berikatan)
4. Penyimpangan Kaidah Oktet
Beberapa molekul kovalen mempunyai struktur lewis yang tidak oktet atau duplet. Struktur demikian dapat di benarkan karena fakta menunjukkan adanya senyawa tersebut, misalnya Co dan Bf3. Pada umunya molekul yang mempunyai jumlah elektron valensi ganjil akan mempunyai susunan tidak oktet, misalnya N2O dan PCls
5. Ikatan campuran Ion atau kovalen
Didalam suatu molekul kadang-kadang terjadi ikatan kovalen dan ikatan ion sekaligus. Bahkan dapat pula terjadi ikatannya merupakan ikatan ion, ikatan kovalen dan ikatan koordinasi. Dalam hal ini untuk menggambarkan struktur lewis-nya harus jelas ion positif dan negatifnya
6. Ikatan kovalen polar dan non polar
Terjadinya kutub listrik dalam ikatan kovalen disebut dengan peristiwa polaritas ikatan. Peristiwa itu di sebabkan adanya perbedaan kekuatan gaya tarik terhadap pasangan elektron yang di gunakan bersama. Besarnya kekuatan gaya tarik elektron dari suatu atom dinyatakan sebagai keelektronegatifan.
Atom mempunyai harga keelektronegatifan labih besar akan menarik pasangan elektron lebih dekat padanya, sehingga atom tersebut menjadi negatif daripada atom tersebut yang kurang kuat gaya tariknya.
Makin besar perbedaan harga keelektronegatifan antara kedua atom yang berikatan, makin polar ikatannya. Atom-atom yang tidak mempunyai perbedaan keelktronegatifan, ikatannya merupakan ikatan nonpolar misalnya molekul O2, N2, H2 dan cl2
7. Ikatan Logam
Gaya tarikan inti atom-atom logam dengan larutan elektron mengakibatkan terjadinya ikatan logam. Adanya elektron yang dapat bergerak bebas dari suatu atom ke atom yang lain menjadikan logam sebagai penghantar yang baik.
BAB III
“Tata nama Senyawa Turunan Alkana
Bagian depan ( alk ) menyatakan jumlah atom karbon dalam molekulnya
1 = Met
2 = Et
3 = Prop
4 = But
5 = Pent
6 = Heks
7 = Hept
8 = Okt
9 = Non
10 = Dek
Bagian tengah ( an, en, atau un ) menyatakan jenis ikatan karbon
an = Jenuh
en = Ikatan rangkap dua
un = Ikatan rangkap tiga
Bagian akhir menyatakan gugus fungsi
a = Hidrokarbon ( Tanpa gugus fungsi )
ol = Alkohol
al = Aldehida
om = Keton
oat = Asam Karboksilat
1. Tata nama Alkohol
a. Nama IUPAC
Nama Alkohol diturunkan dari nama alkana yang sesuai dengan mengganti akhiran a menjadi ol
b. Nama lazim
selain nama IUPAC, alkohol sederhana juga mempunyai nama lazim yaitu alkil alkohol
2. Tata nama Alkoksialkana ( Eter )
a. Nama IUPAC
Dalam hal ini eter di anggap sebagai turunan alkana dengan satu atom H alkana itu di ganti oleh gugus alkohol ( - OR ). Jika gugus alkilnya berbeda, maka alkil yang terkecil yang di anggap sebagai gugus alkoksi, sedangkan gugus lainnya sebagai alkana ( sebagai induk ).
b. Nama lazim
Nama lazim Eter adalah alkil alkil eter, yaitu nama kedua gugus alkil diikuti kata eter. Eter kedua gugus alkilnya sama dinamai dialkil eter. Urutan penulisan gugus alkilnya tidak harus berdasarkan abjad
3. Tata namaAlkanal ( Aldehida )
a. Diturunkan dari nama alkana sesuai dengan mengganti akhiran a menjadi al
b. Nama lazim
Diturunkan dari asam karboksilat yang sesuai dengan mengganti akhiran at menjadi aldehida dan membuang kata asam.
4. Tata nama Alkanon
a. Tata nama IUPAC
Diturunkan dari nama alkana dengan mengganti akhiran a menjadi on.
Penamaan alkanon bercabang adalah sebagai berikut :
1. Rantai induk adalah rantai terpanjang yang mengandung gugus fungsi – CO –
2. Penomoran di mulai dari salah satu ujung rantai induk, sehingga posisi gugus fungsi mendapat nomor terkecil
3. Penulisan sama dengan Alkohol
b. Nama Lazim
Nama lazin keton adalah alkil alkil keton – kedua gugus alkil disebut secara terpisah kemudian di akhiri dengan kata keton
5. Tata nama Asam Alkanoat
a. Tata nama IUPAC
Diturunkan dari nama alkana yang sesuai dengan mengganti akhiran a menjadi oat, dan memberi awalan asam
Tata nama asam alkanoat bercabang, pada dasarnya seperti tata nama aldehida
Sebagai berikut :
1. Rantai induk adalah rantai terpanjang yang mengandung gugus karboksil
2. penomoran dimulai dari atom c gugus fungsi ( atom c gugus karboksil )
3. penulisan nama sama seperti senyawa bergugus fungsi yang lain
Asam karboksilat yang mempunyai dua gugus disebut alkanodioat, sedangkan yang mempunyai tiga gugus disebut asam alkanatriot dan seterusnya.
b. Nama lazim
Nama Lazim beberapa asam karboksilat
No Rumus Bangun Nama IUPAC Nama Lazim
1
2
3
4
5
6
7
8
9 HcooH
CH3CooH
CH3CH2CooH
CH3(CH2)2CooH
CH3(CH2)3CooH
CH3(CH2)3CooH
CH3(CH2)14CooH
CH3((CH2)16CooH
HooCCooH Asam Metanoat
Asam Etanoat
Asam propanoat
Asam Butanoat
Asam Pentanoat
Asam Dodekanoat
Asam Heksadekanoat
Asam Oktadekanoat
Asam Etanadioat Asam Format
Asam Asetat
Asam Propinoat
Asam Butirat
Asam Valerat
Asam Laurat
Asam Palmitat
Asam Stearat
Asam Oksalat
6. Tata nama Alkil Alkanoat ( Ester )
Yang disebut Alkil pada nama itu adalah gugus karbon yang terikat pada atom O ( gugus R’ ), sedangkan alkanoat adalah gugus R – Coo – . Atom C gugus fungsi masuk kedalam bagian alkanoat
7. Tata nama Haloalkana
Haloalkana adalah senyawa turunan alkana dengan satu atau lebih atoh H digantikan dengan atom hidrogen, aturan penamaan haloalkana sebagai berikut :
- rantai induk adalah rantai terpanjang yang mengandung atom halogen
- penomoran dimulai dari salah satu ujung, sehingga atom halogen mendapat nomor
terkecil
- Nama Halogen ditulis sebagai awalan dengan sebutan bromo, kloro, fluoro dan iodo
- Jika terdapat lebih dari sejenis halogen maka prioritas penomoran di dasarkan pada kereaktifan halogen
- jika terdapat dua atau lebih atom halogen sejenis dinyatakan dengan awalan di, tri, dan seterusnya
- jika terdapat rantai samping ( cabang alkil ), maka halogen didahul
BAB IV
”Hukum-hukum dasar kimia”
A. Hukum Kekekalan Massa
Antonie Laurent Lavoiser melakukan penelitian terhadap logam cair yang berwarna putih perak dengan oksigen untuk membentuk merkuri oksida yang berwarna merah. Maka Lavoiser menemukan hukum kekekalan Massa atau lavoiser yang menyatakan bahwa massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi.
Contoh soal :
1). Logam Magnesium seberat 4 gram di bakar dengan oksigen akan menghasilkan magnesium oksida. Jika massa oksigen yang digunakan 6 gram, maka massa magnesium oksida yang di hasilkan dapat di hitung sebagai berikut :
Massa zat-zat sebelum reaksi = massa zat-zat hasil reaksi
M Magnesium oksida = m Magnesium + m oksida
= 4 gram + 6 gram
= 10 gram
B. Hukum perbandingan tetap ( Hukum Proust )
Berdasarkan proses terbentuknya, senyawa adalah gabungan dua unsur atau lebih unsur dengan perbandungan tertentu dan tetap. Melalui percobaan dengan membandingkan massa belerang dengan tembaga adalah 1 : 2, dapat di simpulkan :
1). Setiap senyawa tertentu selalu ( tersusun ) mengandung unsur-unsur yang sama
2). Perbandingan massa unsur-unsur dalam senyawa selalu tetap, pernyataan ini deikenal sebagai hukum perbandingan massa ( Hukum Proust )
C. Hukum perbandingan volume & Hipotesis Avogadro
1). Hukum Perbandingan volume
Di kemukakan oleh ilmuan perancis Joseph Louis Gay Lussac ( 1778 – 1850 ) dengan percobaanya tentang volum gas yang terlihat sebagai reaksi. Setiap satu satuan volum gas hidrogen bereaksi dengan satu satuan vo,um gas clorin akan menghasilkam dua satuan volum gas hidrogen klorida. Setiap dua satuan volum gas hidrogen bereaksi dengan satu satuan volum gas oksigen akan menghasilkan dua satuan volum uap air. Dari percobaan tersebut, Gay Lussac berkesimpulan bahwa :
Volume gas-gas yang bereaksi & volum gas-gas hasil reaksi bila di ukur pada suhu & tekanan yang sama berbanding sebagai bilangan bulat dan sederhana ( Hukum Perbandingan volum Gay– Lussac)
2). Hukum Avogadro & Hipotesis Avogrado
Hukum Avogadro berpendapat bahwa satuan terkecil dari suatu zat tidaklah harus atom, tetapi dapat merupakan gabungan atom yang di sebut molekul, 1 molekul gas hidrogen + ½ molekul oksigen + ½ molekul oksigen → 1 molekul air.
Berdasarkan hal tersebut, maka avogadro membuat hipotesis yang di kenal dengan hipotesis avogadro yang menyatakan bahwa :
Pada suhu dan tekanan yang sama semua gas yang volumnya sama akan mengandung jumlah molekul yang sama
Avogadro yang mengemukakan pola hubungan antara perbandingan volum gas-gas yang bereaksi yaitu :
Jika di ukur pada suhu & tekanan yang sama perbandingan volum gas yang terlibat dalam reaksi sama merupakan angka yang bulat dan sederhana.
BAB V
“Perhitungan Kimia & Persamaan reaksi”
A. Perhitungan kimia ( Stoikiometri ) adalah bagian dari ilmu kimia yang membahas tentang perbandingan massa unsur-unsur dalam senyawa termasuk di dalamnya pembahasan tentang massa unsur-unsur dalam rumus & reaksi kimia.
1). Penentuan rumus empiris & rumus molekul
Rumus empiris menunjukkan perbandingan jumlah atom-atom yang terdapat dalam suatu senyawa. Perbandingan itu di nyatakan dalam bilangan bulat terkecil, bilangan ini di dapat dari analisis terhadap senyawa itu dan di nyatakan dalam mol atom-atom penyusunnya.
Contoh :
1). Suatu karbon mengandung unsur C, H, dan O. pada pembakaran 0,29gr senyawa itu di peroleh 0,66gr CO2 & 0,27gr H2). Bila massa molekul relatif senyawa itu adalah 58 tentukan rumus molekulnya
Jawab :
Cara 1 : Misal senyawa tersebut adalah CxHy)2. maka pada pembakaran trjadi reaksi C x Hy O2 + Oz → CO2 + H2O
Massa C dalam C x Hy Oz = Massa C dalam 0,66gr CO2 Hasil pembakaran.
= 1 x 12 x 0,66
44
= 0,18gr.
Massa H dalam C x Hy Oz = massa H dalam 0,27gr H2o hasil pembakaran
= 2 x 1 x 0,27gr
18
= 0,03gr
Massa O dalam C x Hy Oz = massa Cx Hy Oz – ( massa C + massa H )
= 0,29 – ( 0,18 + 0,03 )gr
= 0,08gr
nC : nH : nO = mc : mH : mO
Arc Arh ArO
= 0,18 : 0,03 : 0,08
12 1 16
= 0,015 : 0,03 : 0,05
= 3 : 6 : 1
Jadi rumus empiris senyawa tersebut adalah C3 H6 O
Jika rumus molekul senyawa di angga ( C3 H6 O ) dengan massa rumus 58, maka,
Mr ( C3 H6 O ) = ( 36 + 6 + 16 ) n
58 = 58 n
n = 1
Jadi, rumus molekul senyawa tersebut adalah 1
2. Persentase Unsur dalam senyawa
Rumus kimia menunjukkan jumlah atom-atom penyusun suatu zat. Oleh karena itu massa atom suatu unsur sudah tertentu, maka rumus kimia tersebut dapat pula di tentukan persentase atau komposisi masing-masing dalam suatu zat.
Contoh soal :
Tentukan komposisi masing-masing unsur dalam senyawa AL2 O3(Ar Al=27,0 = 6)
Jawab :
Misalnya AL2 O3 sejumlah 1 mol, berarti massanya=102gr ( mr AL2 O3 = 102 )
Setiap 1 mol AL2 O3 mengandung 2 mol AL = 2 x 27
= 54
Maka, persentase massa AL dalam AL2 O3 = 54gr x 100%
102gr
= 53,94%
Setiap 1 mol AL2 O3 mengandung 3 mol atom O = 3 x 16
= 48gr
Persentase massa O dalam AL2 O3 = 48 x 100%
102
= 46,06%
Atau,
Persentase massa O dalam AL2 O3 = (100 – 53,94)%
= 46,06%
Dari contoh di atas, maka di dapatkan rumus :
Massa A dalam p gram Am Bn = m x Ar A x p gram
Mr Am Bn
B. Persamaan reaksi
Zat yang mengalami perubahan di sebut zat pereaksi ( reaktan ) dan zat hasil perubahan di sebut Hasil reaksi ( produk )
* Persamaan reaksi menggambarkan rumus kimia zat-zat pereaksi atau reaktan dan zat hasil reaksi yang doi batasi dengan tanda panah.
* Syarat-syarat persamaan reaksi setara adalah :
a). pereaksi dan hasil reaksi di nyatakan dengan rumus kumia yang benar
b). memenuhi hukum kekekalan massa yang di tunjukkan oleh jumlah atom-atom sebelum reaksi ( di belakang tanda panah ).
c). wujud za-zat yang terlibat reaksi harus di nyatakan dalam tanda kurung setelah rumus kimia
-------------------------------
a
1
Langkah-langkah yang harus di tempuh dalam penyetaraan reaksi, sebagai berikut :
1). Tentukan unsur yang mengalami perubahan Biloks
2). Setarakan unsur yang mengalami perubahan biloks dengan memberi koefisien yang sesuai.
3). Tentukan jumlah penurunan biloks dari oksidator dan jumlah penambahan biloks dari reduktor. jumlah perubahan biloks = jumlah atom yang terlibat di kalikan dengan perubahan biloksnya.
4). Samakan jumlah perubahan biloks tersebut dengan memberikan koefisien yaang sesuai
5). Setarakan muatan dengan menambah ion H+ ( Dalam Suasana Asam ), atau ion OH- ( Dalam Suasana Basa )
6). Setarakan atom H dengan menambahkan H2O
Contoh Soal :
1). Setarakan reaksi redoks berikut :
Zn + NO– 3 → ZnO22– + NH3 ( Suasana Basa )
Jawab :
Langkah 1 :
Zn dan N
Langkah 2 :
Zn + NO– 3 → 2n O22– + NH3
Langkah 3 :
Unsur Zn = Dari 0 menjadi + 2 bertambah 2
Unsur N = Dari +5 menjadi – 3 berkurang 8
Langkah 4 :
8 Zn + 2No– 3 → 8ZnO22– + 2NH3
Langkah 5 :
8Zn + 2No3– → 8ZnO22– + 2NH3
– 2 – 16
Langkah 6 :
14oH– + 8Zn + Zno– 3 → 8ZnO22– + 2NH3 + 4H2O
b. Reaksi Rumus
Langkah-langkah yang harus di tempuh dalam cara ini adalah sebagai berikut :
1). Tentukan unsur yang mengalami perubagan biloks. Tuliskan biloks tersebut tepat di atas lambang atomnya masing-masing
2). Setarakan unsur yang mengalami perubahan biloks dengan memberi koefisien yang sesuai
3). Tentukan jumlah penurunan biloks dari oksidator ( yang mengalami reduksi ) dan jumlah pertambahan bilangan oksidasi dari reduktor ( yang mengalami oksidasi )
4). Samakan jumlah perubahan bilangan oksidasi reduktor dan oksidator dengan memberi koefisien yang sesuai
5). Setarakan unsur-unsur yang lainnya dalam urutan kation ( Logam ), anion ( Nonlogam ) hidrogen dan terakhir oksigen ( KAHO ).
Contoh soal :
2). Tentukan reaksi redoks berikut :
Zn + HNO3 → Zn ( NO3 )2 + NH4 NO3 + H2O
Jawab :
Langkah 1 : Znº + HNO3 → Zn+2 (NO3 )2 + NH4 NO3 + H2O
Langkah 2 : Zn + HNO3 → Zn ( NO3 )2 + NH4 NO3 + H2O
Langkah 3 : Znº → Zn+2 Bertambah 2
Zn+5 → N-3 Bertambah 8
Langkah 4 : 8 Zn + 2HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + H2O
Langkah 5 : Kation : 8Zn + 2HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + H2O
Anion : 8Zn + 20HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + H2O
Hidrogen : 8Zn + 20HNO3 → 8Zn ( NO3 )2 + 2NH4NO3 + 6H2O
3). Metode setengah reaksi ( Ion – Elektron )
Proses penyetaran berlangsung menurut langkah-langkah sebagai berikut :
1). Tuliskan kerangka dasar dari setengah reaksi reduksi dan reaksi oksidasi secara terpisah dalam bentuk reaksi ion
2). Masing-masing setengah reaksi di setarakan dengan urutan sebagai berikut :
a. Setarakan atom unsur yang mengalami perubahan bilangan oksidasi
b. Setarakan Oksigen dan Hidrogen
c. Apabila terdapat spesi lain selain unsur yang mengalami perubahan biloks, oksigen dan hidrogen, maka petaraan di lakukan dengan menambahkan spesi yang bersangkutan pada ruas lainnya.
d. Setarakan muatan dengan menambahkan elektron pada ruas yang jumlah muatannya lebih besar.
3). Samakan jumlah elektron yang di serap pada setengah reaksi reduksi dengan jumlah elektron yang di bebaskan pada setengah reaksi oksidasi dengan cara memberi koefisien yang sesuai, kemudian jumlahkam kedua ruas setengah reaksi tersebut.
“ REAKSI – REAKSI SENYAWA KARBON “
1. Berbagai jenis reaksi senyawa karbon
Reaksi senyawa karbon merupakan pemutusan dan pembentukan ikatan kovalen. Jenis senyawa karbon yaitu subtitusi, adisi, eliminasi dan redoks
a. Subtitusi
pada reaksi subtitusi dimana atom atau gugus atom yang terdapat dalam suatu molekul di gantikan oleh atom atau gugus atom lain
b. adisi
pada reaksi adisi dimana molekul senyawa yang mempunyai ikatan rangkap berubah menjadi ikatan tunggal
c. Eliminasi
pada reaksi eliminasi dimana molekul senyawa berikatan tunggla berubah menjadi senyawa berikatan rangkap dengan melepas molekul kecil.
d. reaksi redoks
adalah reaksi yang di sertai perubahan bilangan oksidasi
2. Reaksi – reaksi Alkohol
Atom karbon primer adalah atom karbon yang terikat langsung pada satu atom karbon yang lain, atom karbon sekunder terikat langsung pada dua atom karbon yang lain dan seterusnya. Berdasarkan jenis atom yang mengikat gugus – OH Alkohol di bedakan menjadi alkohol primer – OH pada atom karbon primer dan seterusnya
a. reaksi dengan logam aktif
atom H dari gugus – H dapat disubtitusi oleh logam aktif misalnya matrium dan kalium
b. subtitusi gugus – OH oleh halogen
gugus – OH dapat di subtitusi oleh atom halogen bila di reakskan dengan HX pekat, atau PXs ( X = Halogen )
c. Oksidasi Alkohol
Dengan zat – zat pengoksidasi sedang seperti larutan K2Cr2O dalam lingkungan Asam, Alkohol teroksidasu sebagai berikut :
I. alkohol primer membentuk aldehida dan dapat teroksidasi lebih lanjut membentuk asam karboksilat.
II. alkohol sekunder membentuk keton
III. alkohol tersier tidak teroksidasi
Dalam oksidasi alkohol, sebuah atom oksigen dari oksidator akan menyerang atom H – Karbinol
d. Pembentukan Ester ( Esterifikasi )
alkohol bereaksi dengan asam karboksilat membentuk ester dan air
e. dehiodrasi alkohol
jika di panaskan bersama asam sulfat pekat akan mengalami dehidrasi ( melepas molekul air ) membentuk estr atau alkena
3. Reaksi – Reaksi Eter
a. Pembakaran
eter mudah terbakar membentuk gas karbon dioksida dan uap air
b. reaksi logam aktif
eter tidak bereaksi dengan logam natrium ( Logam aktif )
c. Reaksi dengan PCLs
eter bereaksi dengan PCLs, tetapi tidak membebaskan HCL
d. Reaksi dengan Hidrogen Halida ( HX )
Eter terurai oleh asam halida, terutama HI
4. Membebaskan Alkohol dengan Eter
Alkohol dan eter merupakan isomer fungsi dengan rumus umum CnH2n+2O, tetapi kedua homolog ini mempunyai sifat yang berbeda nyata, baik sifat fisik maupun sifat kimia
☺Perbandingan titik cair dan titik didih antara eter dan alkohol
Eter Titik Cair Titik Didih Alkohol Titik Cair Titik Didih
- Metil Eter
- Etil Eter
- Propil Eter - 140
- 116
- 122 - 24
34,6
91 Etanol
1 – Butanol
2 - Butanol - 115
- 90
- 52 78,3
117,7
155,8
☺Secara kimia, alkohol dan etr dapat dibedakaan berdasarkan reaksinya dan logam
natrium dan posforus pentaklorida.
a. alkohol bereaksi dengan natrium membebaskan H, sedangkan eter tidak bereaksi
b. alkohol bereaksi dengan PCLs menghasilkan gas HCL, sedangkan eter tidak menghasilkan HCL.
5. Reaksi – Reaksi Aldehida
a. Oksidasi
Aldehida merupakan reduktor kuat sehingga dapat mereduksi oksidator – oksidator lemah. Pereaksi Tollens dan Fehling adalah dua contoh oksidator lemah yang merupakan pereaksi khusus untuk mengenali aldehida. Pereaksi ini terbuat dari perak nitrat dalam amonia dengan cara menetesi larutan perak nitrat kedalam amonia, sedikit demi sedikit hingga endapan yang mula – mula terbentuk larut kembali. Jadi pereaksi Tollens mengandung perak sebagai ion kompleks, yaitu [ Ag (NH3)2 ]
b. Adisi Hidrogen
Ikatan rangkap – C = O dari gugus fungsi aldehida dapat di adisi hidrogen membentuk suatu alkohol primer. Adisi hidrogen menyebebkan penurunan biloks atom karbon gugus fungsi
c. Pembentukan Asetala dan Hemiasetala
Asetala merupakan senyawa karbon dengan dua gugus eter yang terikat pada suatu atom primer, sedangkan Hemiasetala merupakan gugus yang terikat terdiri dari satu gugus eter dan satu gugus alkohol
6. Sifat – Sifat Keton
a. Oksidasi
merupakan reduktor yang lemah dari pada aldehida. Aldehida dan keton dapat di bedakan dengan menggunakan pereaksi – pereaksi tersebut :
Aldehida + Pereaksi Tollins → Cermin perak
Keton + Pereaksi Tollins → Tidak ada reaksi
Aldehida + Pereaksi Fehling → Endapan merah bata
Aldehida + Pereaksi Fehling → Tidak ada reaksi
b. Reduksi
menghasilkan alkohol sekunder
c. Pembentukan ketala dan hemiketala
Ketala adalah senyawa karbon dalam mana dua gugus eter terikat pada satu atom karbon sekunder. Jika gugus yang terikat itu adalah satu gugus eter dan satu gugus alkohol maka di sebut hemiketala
7. Menbedakan Aldehida dengan Keton
Aldehida dengan keton merupakn senyawa fingsional tetapi mempunyai sifat – sifat yang berbeda. Perbedaan antara aldehida dengan keton yaitu dengan teori Tollens atau pereaksi Fehling, dimana Aldehida bereaksi positif dengan kedua pereaksi tersebut, sedangkan keton bereaksi negatif.
8. Reaksi – Reaksi Asam Karboksilat
a. Reaksi penetralan
Asam karboksilat bereaksi dengan basa membentuk garam dan air. Garam natrium atau kalium dari asam karboksilat membentuk sabun. Sabun natrium juga di kenal juga sabun keras, sedangkan sabun kalium disebut juga sabun lunak. Sebagai contoh adalah Natrium Stearat dan kalium stearat. Asam alkanoat merupakan asam lemah. Semakin panjang rantai alkilnya, semakin lemah asamnya. Asam format adalah yang paling kuat. Asam format mempunyai Ka = 1,8 x 10-4. Oleh karena itu kalium dan natrium mengalami hidrolisis parsial dan bersifat basa.
b. Reaksi pengesteran
asam karboksilat bereaksi dengan alkohol membentuk ester yang disebut Esterifikasi ( Pengesteran )
9. Reaksi – Reaksi Ester
Hidrolisis
Ester terhidrolisis dengan pengaruh asam dan membentuk alkohol dan asam karboksilat. Reaksi ini merupakan kebalikan dari pengesteran
10. Reaksi – Reaksi Haloalkana
Haloalkana dibuat melalui proses subtitusi, dapat dibuat bahan kimia lainnya melalui berbagai reaksi khususbya subtitusi dan eliminasi
a. Subtitusi
Atom Halogen dari Haloalkana dapat diganti oleh gugus – OH jika Haloalkana do reaksikan dengan suatu larutan basa kuat, misalnya dengan NaOH.
b. Eliminasi Hx
Haloalkana dapat mengalami eliminasi Hx jika di panaskan bersama suatu alkoksida.
ukan
CHATBOX
02 Februari, 2009
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar